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Abstract 

The computational technique of molecular dynamics is discussed, with special attention to force fields for protein 

simulations and to methods for the calculation of solvation free energies. Additionally, computational methods aimed at 

characterizing and identifying ligand binding pockets on protein surfaces are discussed. Practical information about 

databases and publicly-available software of use in drug design and discovery is provided. The main objective of this paper 

is to give the reader a practical toolbox for applications in quantitative biology and computational drug discovery. 
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1. Introduction 

Drug design is a conceptual and computational 

approach to find drug-like molecules by rational 

design, based on the information regarding their 

intended biomolecular target. A drug target is an 

important molecule, usually a protein, involved in a 

particular metabolic or signalling pathway that is 

specific to a disease condition. Most approaches 

attempt to inhibit the functioning of an aberrant 

pathway in the diseased state by interfering with 

the normal functioning of the target. Drugs may be 

designed at a molecular level that bind to the active 

region and inhibit this target molecule. However, 

these drugs should be designed in such a way as not 

to affect any other important biomolecules that may 

cause undesired side effects. Due to the complexity 

of the drug design process, serendipity has 

traditionally played a key role in finding potential 

new drugs since many challenges are posed by the 

large chemical and biological spaces involved. 

Conversely, rational drug design requires 

knowledge of the bio-molecular target. For 

example, structure-based drug design utilizes three-

dimensional information about biomolecules 

obtained from techniques such as x-ray 

crystallography and NMR spectroscopy. Using 

such information, the effect of a drug bound to its 

binding site on the biomolecule can be studied. 

However, one must also consider whether a drug 

candidate molecule is “drug-like”, which is related 

to the necessary physical properties for effective 

absorption and biological action.  

 

The first step in the rational drug design process is 

usually the identification and characterization of 

the bio-molecular target, such as a protein or a 

DNA sequence. From here, computational 

techniques can be used to model a drug within the 

binding site of the bio-molecular target, and this 

information can be used to design novel drug 

panels with enhanced activity. Of the 

computational techniques available, molecular 

dynamics is particularly important in the 

investigation of target characterization and drug-

target interactions. Below, we provide an overview 

of protein structure characterization and molecular 

dynamics methods.  

 

Protein morphology characterization is the first step 

in analyzing the properties of the drug target. For 

each protein of interest, we may obtain information 

about protein sequences, 3D structural data and 

binding pockets using these sources: 

• Swiss-Prot 

(http://www.expasy.ch/sprot/sprot-

top.html) and SWISS-MODEL Repository 

(http://swissmodel.expasy.org/repository/)  

• X-ray crystallography, cryo-electron 

microscopy or nuclear magnetic resonance 

(NMR) spectroscopy (deposited in the 

Protein Data Bank 

(http://www.rcsb.org/pdb/)) 

• Sequence homology algorithms  

• CASTp, (http://cast.engr.uic.edu/cast/) 

 

3D structural data may be reported in the following 

formats: PDB, Cambridge, AMPAC/MOPAC, 

MDL Molfile e.g. SD files, Sybyl, MOL2, and 

xpdb-mini, JCAMP/CS, CIF, MDL RXN, RDF, 

XYZ, SMD4, SMD5, CTX, CACTVS, SMILES 

(including SMARTS subset), Compass, 441, 

Gaussian/Input, Gaussian/Archive, SCF, SHEL-X, 

XTEL, Cerius (Ascii exchange format of CeriusII 

Toolkit), Sharc (SHift ARChives format), 

Alchemy, Hyperchem, Molconn-Z, Sybyl, Sybyl2, 

SLN. 

Properties of proteins: BioGeometry 

(http://biogeometry.cs.duke.edu/index.html) 

presents computational techniques for representing, 

storing, searching, simulating, analyzing, and 

visualizing biological structures. It contains a list of 

software to calculate the shape of biological 

structures. The following is a list of subroutines 

available and their functions: 

• Almost-Delauanay Tetrahedra (AlmDel): 

is used for analyzing protein structure 

• Alpha Shapes: is general purpose software 

for analyzing protein structures 

• Ciel: can be used for generating interface 

surfaces from protein structural data 

•  Coreset: is used for computing shape 

descriptors of low-dimensional data sets 

• Monte Carlo Simulation: For performing 

efficient Monte Carlo simulations of 

proteins, which is especially valuable in 

the case of intrinsically disorderd proteins 

where huge numbers of quasi-stable 

conformations exist 

• ProShape: can be used for computing 

protein measures and their derivatives 

• Skin Software: is found useful in 

triangulating the surface of a protein 

• Stochastic Roadmap Simulation (SRS): is 

a good tool for computing ensemble 

properties of molecular motions (folding, 

binding) 

• Writhe: is of use in computing the number 

of protein backbones 

• CGAL: (CGAL.http://www.cgal.org/) is 

an Open Source Project to provide easy 

access to efficient and reliable geometric 

algorithms in the form of a C++ library.  

 

2. Molecular dynamics 

http://www.expasy.ch/sprot/sprot-top.html
http://www.expasy.ch/sprot/sprot-top.html
http://swissmodel.expasy.org/repository/
http://www.rcsb.org/pdb/
http://cast.engr.uic.edu/cast/
http://biogeometry.cs.duke.edu/index.html
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Molecular Dynamics (MD) simulations involve the 

numerical integration of Newton’s equations of 

motion (EOM), calculating the force on each atom 

from a potential to evolve these atoms through time 

and space including forces acting on each atom and 

the effects of thermal noise. Generally, classical 

potentials are used, which provide accurate 

approximations of many properties, such as the 

inter-nuclear distance between bonded atoms and 

electrostatic interactions. However, not all 

properties of the system can be captured this way. 

It is standard practice to use one of several software 

packages that have been developed over the past 40 

years. Some of the most popular packages are: 

Amber, CHARMM, NAMD, GROMACS, 

GROMOS, Martini etc.  

 

Molecular dynamics simulations result in 

trajectories, which contain information about the 

changes of atomic positions over time, which can 

be analyzed in great detail to extract pertinent 

information. This includes the root-mean-square 

deviation (RMSD) of ligand and protein atoms, 

supramolecular (non-covalent) interactions, binding 

free energies, [7] changes in the potential energy of 

the system, short-lived reaction intermediates, [8] 

conformational changes, flexibility, and optimum 

binding modes [9] among many various properties 

of the biomolecule and its environment. In a 

computer-aided drug design process, the mobility 

of crystal water molecules near proteins by MD 

simulations can help identify the amino acid 

residues that play an important role in ligand 

binding (hot spots) [16]. MD simulations can also 

be used for studying ionic conductivity [10], where 

the simulations provide atomic level insights into 

ionic mobility. In terms of particular applications, 

MD has been successfully used to study clinically 

important proteins such as HIV-1 gp120 [11], 

binding sites [12], drug resistance mechanisms 

[13], and protein folding [14], [15] to name but a 

few.  

 

In order to run an MD simulation on a crystal 

structure of a protein, several steps must be taken to 

ensure that the system is as physiologically-

consistent as possible. The following general 

protocol is a balance between physiological 

accuracy and computational efficiency.  

1. Remove solvent molecules, crystallization 

salts and other extraneous atoms.  

2. Determine the protonation state of amino 

acids.  

3. Convert the file of the system to be 

simulated to the appropriate format for 

MD software.  

4. Add appropriate counter-ions to the 

system to produce a zero net charge in 

random positions that do no overlap with 

the protein.  

5. Use Langevin Dynamics (LD), to simulate 

an aqueous environment, with a long 

electrostatic cutoff radius to approximate a 

Debye-Hückel distribution of the ions. 

The protein should be fixed in place to 

decrease computation time.  

6. Solvate the system in a sphere of water, 

rectangular prism, truncated octahedron, 

etc. using a water sample equilibrated at 

standard pressure and temperature.  

7. Minimize the solvated system using the 

Steepest Decent algorithm to remove 

energetically unfavorable conformations.  

 

In x-ray crystallography, crystallization is induced 

through the use of salts and other molecules which 

may not represent physiological conditions. Tightly 

bound hydration water is also often found the in 

crystal structures. Thus, in Step 1 we need to 

remove these atoms as they interfere with 

physiological protein dynamics. Since proteins are 

composed of amino acids, they typically have some 

net charge. The net charge depends on the 

consistency of the solute, the pH and the local 

charge of the surrounding system. Several methods 

exist to determine the net charge of a protein, 

including the online program WHAT IF [3] where 

only histidine protonation is considered since it has 

a pKa near 7.0. Since histidine has three protonation 

states (HSD - proton on ND1, HSE - proton on 

NE2, and HSP - proton on both ND1 and NE2) a 

hydrogen bond network analysis can determine 

what protonation state was used in the 

crystallographic assignment. However, this is 

typically set to HSP for all histidine residues, the 

least likely form. A second method uses Engh and 

Huber [4] geometries for histidine and used a 

statistical analysis on small molecule entries in the 

Cambridge Structural Database [4]. In Step 2 one 

should arrive at a topology that is consistent with 

both methods. Step 3 involves a “simple” file 

format conversion. Most protein structures are 

currently available in the Protein Data Bank [5] 

www.rcsb.org in the PDB format. In Step 4, one 

must ensure the net charge of the system is neutral. 

Neutralizing the system is accomplished by adding 

counter ions to the system, where the appropriate 

ions for the particular system must be selected. 

Typical concentrations of major ions in the 

mammalian cell are as follows [6]: 

Ion K+ Na+ Cl- Mg2+ Ca2+ 

Concentration 140 

mM 

10 

mM 

10 

mM 

0.5 

mM 

0.1 

μM 

 

 

http://www.rcsb.org/
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In Step 5 we use a very large cut off radius to 

ensure that the ions are not merely diffusing. After 

neutralizing the system, the next most important 

step is hydration in Step 6. The addition of water to 

the system is completed using models pre-

equilibrated to room temperature (300K) and 

atmospheric pressure. In Step 7, the structure is 

relaxed to eliminate any energetically-unfavourable 

positions, such as steric overlap, or overly-stretched 

bonds and angles. These instances would 

experience large forces when calculated as part of 

the simulation. As a result, unnatural vibrational 

modes may be found or extremely high atom 

velocities. By minimizing the system, these 

problems are addressed.  

 

Performing an MD simulation requires an atomic-

resolution model of the system being simulated. 

This model for biological macromolecules may be 

obtained from nuclear magnetic resonance (NMR) 

spectroscopy, X-ray crystallographic data and 

electron microscopy. NMR or crystallographic 

structures of bio-macromolecules can be 

downloaded from the Protein Data Bank 

(http://www.pdb.org). In the absence of 3D 

experimental data of a desired target, the model can 

be obtained by homology modeling, which uses a 

known 3D structure of a homologous protein as a 

template, along with the amino acid sequence of 

the desired protein, to get a structure. However, the 

quality of results are dependent on the sequence 

identity of the target and template, which should be 

40% or higher. 

 

During an MD simulation the forces acting on each 

atom of the system are calculated and atoms are 

moved according to those forces. This type of 

simulation is advanced by a small time step 

(commonly on the order of a femtosecond) to 

obtain a trajectory. The net forces are a sum of 

contributions due to covalently-bonded interactions 

and non-bonded interactions. Parameter fitting is 

needed to calculate these interactions [17]. Non-

bonded interactions include van der Waals’ and 

electrostatic interactions modeled respectively by 

the Lennard-Jones (LJ) potential and Coulomb’s 

law. Parameter fitting is done to reproduce the 

actual behavior of real molecules. This includes 

determining the van der Waals’ radii, partial 

charges on atoms, bond lengths and bond angles. 

These parameters collectively define a force field. 

To simulate effects of solvent on biomolecules, one 

can use either explicit or implicit solvent models. 

While explicit solvent models attempt to provide a 

realistic model by including the solvent molecules 

in the system, implicit models use a mean field 

approach [18], [19]. A potential of mean force 

(PMF) is applied to approximate the behavior of 

many solvent molecules. Explicit solvent 

simulations are computationally expensive because 

enormous numbers of solvent molecules, such as 

TIP3P water molecules, are added to the system for 

realistic simulations reflecting the molecular 

complexity of the biomolecule and its environment. 

Implicit solvent models increase the speed of 

simulation because solvent effects, due to the 

presence of a huge number of explicit solvent 

molecules, have been represented by various 

empirical functions and no Newtonian equations of 

solvent molecules need to be solved.  

 

Brownian dynamics utilizes the Langevin EOMs to 

simulate particles immersed in a solvent or in 

contact with a heat bath. The intended use of 

Langevin dynamics within CHARMM is as a heat 

bath when using a Stochastic Boundary Potential 

(SBP) or a Spherical Solvent Boundary Potential 

(SSBP). In both these formulations, the structure of 

interest is explicitly solvated in a sphere of water 

with radius r. Outside of this distance r, Langevin 

dynamics is used to implicitly simulate the effects 

of the water. Other than SBP and SSBP, Langevin 

dynamics is also used in fully-implicit solvent 

models. Such models use a dielectric constant 

(commonly ε = 80, representing water), although 

distance-dependent dielectrics may also be used. 

Since this method eliminates the need for explicit 

water molecules, it is significantly faster than 

utilizing an explicit fully-hydrated system. It may 

be particularly usefully for ion equilibration when 

preparing a system for simulation.  

 

Regarding simulation efficiency and accuracy, 

several techniques described below are commonly 

used. First, one can restrain the fastest vibrations 

(involving hydrogen atoms). The SHAKE 

algorithm is one example. This allows a larger time 

step to be used during simulations [20]. Second, 

long-range Coulomb interactions are taken into 

account by approaches such as a cut-off based 

method [21] or the particle mesh Ewald (PME) 

approach [22]. If the cut-off range is shortened, 

computational time is reduced accordingly but this 

comes at the expense of computational accuracy. 

On the other hand, if the cut-off range is increased, 

accuracy improves at the cost of computational 

time. The researcher needs to select an optimal 

value in order to keep a balance between two. 

 

MD can provide valuable insights into how the 

conformation of a protein may change with time. 

The binding of ligands is also affected by protein 

flexibility. Receptor flexibility can be handled by a 

structure ensemble approach. When a small 

molecule approaches a receptor protein, the 

receptor is in continuous motion and both the 

http://www.pdb.org/
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receptor and small molecule adjust their 

conformations to fit each other. Consequently, the 

corresponding binding energy can be calculated 

more accurately as the average binding energy of 

an ensemble of snapshots obtained from MD 

trajectories [23]–[25]. Using multiple trajectories 

obtained from same initial structures improves the 

accuracy of binding energy calculations [26]. The 

improvement of accuracy is due to denser sampling 

of the conformational space by utilizing multiple 

trajectories. Increasing the time duration of a 

simulation allows even more conformational 

sampling and may result in more accurate binding 

energy calculations. 

 

Decomposition of binding free energies obtained 

using frames from MD trajectories is an important 

way to obtain information about the residues that 

significantly contribute to binding affinity. 

Residue-wise decomposition also gives insights 

into the changes in binding free energies due to 

mutations, especially single point mutations [27]. 

The molecular mechanics Poisson–Boltzmann 

surface area (MM-PBSA) method of estimating the 

binding free energy has been widely used to 

calculate and decompose binding energies [28]. 

 

Improvements in computer hardware and molecular 

modeling techniques have resulted in great 

improvements in the ability to study 3D models of 

molecules. Molecular dynamics is a very useful and 

inexpensive tool to study behavior of molecules in 

silico. However, the use of MD is limited by the 

computational time required to carry out a 

reasonable length of simulation. This, in turn, is 

dependent on the availability of computational 

hardware and time allocation for high-performance 

computing. Depending on the time required for a 

bio-molecular system to reach equilibrium, MD can 

be run long enough to represent evolution of a 

system from a few nanoseconds to a few 

microseconds. Long time-scale dynamical 

processes, such as slow conformational changes or 

protein assembly processes, are notoriously 

difficult to model by MD. Enhanced sampling can 

be achieved by metadynamics [29] to explore the 

transition regions between stable states of a system. 

Replica-exchange molecular dynamics (REMD) 

also enhances sampling by overcoming barriers 

between stable states. This is accomplished by 

allowing systems of similar potential energies to 

sample conformations at different temperature. In 

addition to sampling, MD is limited by the 

accuracy of the force field selected for simulations. 

Further improvement of force fields to reproduce, 

in silico, the behavior of real molecules is still 

important, especially as improvements in computer 

hardware provide the ability to run longer 

simulations. 

 

Molecular dynamics is used together with other 

methods to solve a host of problems in bio-

molecular modeling [32]–[38]. Still, the accuracy 

of force fields and the treatment of solvent effects 

are two key areas where significant scope for 

improvement exists. In the case of virtual screening 

methods that involve large libraries of chemical 

compounds in order to identify a high-affinity 

small molecule that is expected to act as an enzyme 

inhibitor, or a protein-protein interaction blocker, 

the calculation of the binding energy of potential 

hits may help prioritize compounds for 

experimental testing. This will first require an MD 

protocol to be validated. Validating a protocol can 

be done with the help of inhibitors of the same 

enzyme that have an experimentally-determined 

activity (i.e. positive controls). The better the 

correlation between the calculated binding free 

energy and the known activity, the higher the 

confidence in the predicted binding energies of 

potential hits. Longer simulations using multiple 

trajectories are computationally expensive but may 

aid in calculating more accurately the respective 

binding energies and may result in a better 

correlation with experimental data. Including the 

ions and co-factors present in the system for MD 

simulation with correct parameters is a major step 

towards improved accuracy, especially if the ions 

or cofactors are close to the binding site of a 

receptor. Good MD sampling positively influences 

the process of virtual screening. Accurate modeling 

of physiologically relevant conformations is 

essential to structure-based drug design. Several 

studies indicate that virtual screening can be 

improved by taking into account the 

conformational freedom of a protein [39]. 

 

As mentioned above, in a classical MD simulation, 

the forces on atoms are calculated from Newton’s 

second law is 𝑚�̈� = −∇𝑉, where 𝑉 is the potential 

energy function. The function that describes the 

potential energy is called a force field. Today, 

several force fields are available, and they are 

divided in three groups: (a) all-atoms force fields 

(parameters are considered for every atoms), (b) 

united atoms force fields (aliphatic hydrogens are 

represented implicitly) and (c) coarse-grained force 

fields (groups of atoms are treated as super atoms). 

Here, we focus on all-atom and united atom force 

fields.  

 

In order to study large systems with MD, a 

potential must be both simple and physically 

accurate. Potentials derived from classical 

mechanics called forcefields are largely empirical, 
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i.e. they consist of functions depending on atom 

coordinates that are parameterized based on 

experimental and ab initio data to reproduce 

observed experimental equilibrium behaviours. 

Classical forcefields generally adopt the following 

form: 

 

 

 

𝑉 = ∑ 𝐾𝑏 (𝑏 − 𝑏0)2

bonds

+ ∑ 𝐾θ(θ − θ0)2

angles

+ ∑ 𝐾𝜙[cos(𝑛𝜙 + 𝜑) + 1]

torsions

+ ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )

𝑁

𝑖<𝑗

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

𝑁

𝑖<𝑗

 

     (1) 

 

 

 

 

 

The first term represents the potential between two 

chemically-bound atoms, modeled as a simple 

harmonic potential. The parameters are 𝐾𝑏 (related 

to force constant) and 𝑏0 (related to equilibrium 

bond length), while the variable, 𝑏, is the distance 

between atoms. 

The proximity between three atoms that are related 

via chemical bonds can be described with an angle. 

The second term in Equation (1) represents this 

angle-dependence involving three atoms and is also 

modeled by a harmonic potential, where θ0 

(equilibrium angle) and 𝐾θ (force constant) are 

parameters and θ is the angle between the three 

atoms in the structure. The third term in Equation 

(1) represents dihedral angle (torsion) potential and 

depends on four atom coordinates. This potential is 

periodic and is usually represented by a cosine 

function and involves parameters 𝐾𝜙, (barrier for 

rotation), 𝑛 (number of maxima) and 𝜑 (angular 

offset). The variable, 𝜙, is obtained from dihedral 

angles in the structure. Improper torsion terms  

 

The last two terms represent non-bonded 

interactions and are calculated pairwise between 

atoms i and j. The fourth term in Equation (1) is the 

Van der Waals potential, which is typically 

represented by a Lennard-Jones 6-12 potential. 

The 𝑟−6 term is the attractive component while the 

𝑟12  term approximates Pauli repulsion. Parameters 

𝐴𝑖𝑗 and 𝐵𝑖𝑗 are atom specific, while 𝑟𝑖𝑗  is a variable 

representing the distance between atoms i and j. 

The final term represents the electrostatic potential 

between atoms, and is modeled as a Coulomb 

potential. Parameters 𝑞𝑖 and 𝑞𝑗 are (fixed) charges 

on atoms i and j, while the constant 𝜀0 is the 

permittivity of free space Electrostatic interactions 

dominate over van der Waals forces for long-range 

inter-molecular interactions and they play a 

significant role in non-chemical binding. Each 

atom in a structure is assigned a partial charge from 

ab initio simulations.  

 

Here we present a summary of the most commonly 

used force fields in MD simulations, namely 

AMBER, CHARMM, OPLS and GROMOS. 

 

The functional form from which most of the 

AMBER (Assisted Model Building with Energy 

Refinement) force fields are derived is the one 

developed by Cornell and co-workers (Equation 

(1)) [17]. The most frequently used Amber fixed-

charges force field version for proteins and nucleic 

acids is ff99SB [41], developed as a modification 

of the old ff99 force field [42]; this version allows 

good results to be obtained [43], [44]. A newer 

version for proteins studies, ff12SB [45], 

introduced better secondary structure prediction 

compared with ff99SB. Comparisons between the 

two versions found that ff12SB performed better 

[46]. Another AMBER force field used extensively 

is ff03 [47], [48], which introduced some changes 

to ff99 related to charge calculations and changes 

in Ψ and Φ backbone torsions for proteins. A 

united atom version of ff03, the ff03ua, is also 

available [49]. Furthermore, a general AMBER 

force field (GAFF) [50] was developed to include 

parameters for small molecules. Therefore, it is 

possible to use this force field to perform MD 

simulations of receptor-ligand complexes.  

 

The CHARMM (Chemistry at Harvard 

Macromolecular Mechanics) force fields are the 

second most frequently used set of force fields for 

MD simulations. The CHARMM force fields use 

classical (empirical or semi-empirical) and 

quantum mechanical (semi-empirical or ab initio) 

energy functions for different types of molecular 

systems. They include parameters for proteins, 

nucleic acids, lipids and carbohydrates, allowing 

simulations on all commonly-encountered 

biomolecules. The initial version of CHARMM 

used an atom force field with no explicit hydrogens 

[51]. Later, the CHARMM19 parameters were 

developed, in which hydrogen atoms bonded to 

nitrogen and oxygen were explicitly represented; 

hydrogens bonded to carbon or sulfur are still 

treated as extended atoms [52]. The idea behind the 

CHARMM19 parameters was to obtain a balanced 

interaction between solute-water and water-water 

energies. Although this force field was tested 

primarily on gas-phase simulations, it is now used 

for peptide and protein simulation with implicit 
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solvent models. In CHARM22, the atomic partial 

charges were derived from quantum chemical 

calculations of the interactions between model 

compounds and water [53]. CHARMM22 is 

parameterized for the TIP3P explicit water model, 

although it is frequently used with implicit 

solvents. A corrected version of CHARMM22 with 

dihedral potential corrected was released as 

CHARMM22/CMAP [54]. CHARMM27 

parameters were developed for nucleic acids (RNA, 

DNA) and lipid simulations [2]. Therefore, 

CHARMM22 and CHARM27 can be combined for 

the simulation of ligands or proteins binding to 

nucleic acids. 

 

For the OPLS (Optimized Potentials for Liquid 

Simulations) force fields, the potential energy 

function was originally designed [51] to simulate 

the properties of the liquid states of water and 

organic liquids, and its performance was shown to 

be better than other force fields [52]. For proteins, a 

united atoms version was followed by an all-atoms 

version (OPLS-AA) [55]. The OPLS-AA force 

field uses the same parameters as the Amber force 

fields for bond stretching and angles. The torsional 

parameters were obtained by using data from ab 

initio molecular orbital calculations for 50 organic 

molecules and ions [56]. Several improvements and 

re-parameterizations were proposed later [55], [57], 

including for simulations of phospholipid 

molecules [58]. 

 

The GROMOS (Groningen Molecular Simulation) 

force fields were developed in conjunction with the 

software package of the same name to facilitate 

bio-molecular simulations in a university 

environment [58]. The initial GROMOS force field 

was developed for applications to aqueous or 

apolar solutions of proteins, nucleotides and sugars. 

However, a gas phase version for the simulation of 

isolated molecules is also available [58]. The major 

versions of the GROMOS force fields are 

GROMOS 43A1 [59], GROMOS 45A3 [60], 

GROMOS 53A5 and 53A6 [61], and GROMOS 

54A7, 54B7 and 54A8 [62], [63]. The GROMOS 

force fields are united atom force fields, i.e. 

without explicit aliphatic (non-polar) hydrogens. 

These force fields are widely used for the 

simulation of protein folding, computational drug 

design, and other types of MD. 

 

The calculation of solvation free energies is still 

one of the more challenging problems in MD 

simulations. Determining solvation free energy is 

especially difficult in aqueous bio-systems since 

they are relatively large [64]. Solvation free energy, 

∆𝐺solv, is  defined as the net energy change upon 

transferring a molecule from the gas phase into a 

solvent with which it equilibrates [65]. Solvation 

effects can change the physical and chemical 

properties of biomolecules including charge 

distribution, geometry, vibrational frequencies, 

electronic transition energies, NMR constants and 

chemical reactivity. Several methods for modeling 

solvation can be selected depending on the required 

accuracy and computational cost. Ordered from the 

highest accuracy (and most computational cost) to 

the lowest accuracy (and least computational cost), 

the types of methods are: polarizable explicit 

solvent, fixed charge explicit solvent, simple 

explicit solvent, nonlinear Poisson–Boltzmann, 

linear Poisson–Boltzmann, and generalized Born. 

 

The simplest method is to treat the physical effects 

(e.g. electrostatic interactions, cavitation, 

dispersion attraction and exchange repulsion) of the 

solute implicitly. This method represents the 

solvent as a continuum environment. The most 

important factors to be considered in an implicit 

solvent model are electrostatic interactions and 

cavitation. The electrostatic component of the 

solvation free energy is the work needed to charge 

the solute in solution minus this work in vacuum 

[64], [65]. Cavitation refers to the size and shape of 

a cavity that the solute can occupy. Several 

different implicit solvent models are briefly 

discussed below. 

 

The solvation free energy of a molecule, ∆𝐺solv, can 

be divided into two parts: electrostatic and non-

electrostatic. The electrostatic energy is the energy 

needed to remove the charges in vacuum and in the 

continuum solvent environment charge the 

molecule again. The origin of the non-electrostatic 

energy is a combination of the van der Waals 

interactions between the solute and solvent 

molecules and the breaking of the water structure in 

the presence of the solute molecules. The 

generalized Born (GB) model is based on the Born 

approximation of point charges in a spherical 

cavity for each of the solute atoms. The cavity 

dielectric continuum represents the polarization 

effects of the solvent. Numerical methods are used 

to determine the point charges on the cavity surface 

that make the same electrostatic potential in 

vacuum as it appears from the solute’s charge 

distribution. 

 

The polarization energy is calculated by making 

approximations in the Poisson-Boltzmann (PB) 

equation, 
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    (2) 

 

 

 

where 𝛼𝑖 is effective Born radius of particle 𝑖, 𝑟𝑖𝑗  is 

the distance between atoms 𝑖 and 𝑗, 𝜀int and 𝜀ext the 

internal and external dielectric constants, 

respectively, and 𝑞𝑖 is the electrostatic charge on 

particle 𝑖. The non-electrostatic contribution is 

calculated by empirical methods as a function of 

the solvent accessible area. This is added to the 

electrostatic part to yield the solvation free energy 

[64]–[69]. 

 

Poisson–Boltzmann model: The electrostatic force 

can be calculated from the PB equation (2) for 

solvents containing ions. Solving Poisson’s 

equation gives the function describing the 

electrostatic environment that is modeled with a 

dielectric continuum model, 

 

∇ ⋅ 𝜀(𝑟)∇𝜑(𝑟) = −4𝜋𝜌(𝑟),      (3) 

 

where 𝜑(𝑟) is the electrostatic potential, 𝜀(𝑟) is the 

dielectric constant and 𝜌(𝑟) is the charge density. 

Poisson’s equation has to be solved using 

computers and adopting numerical methods, since 

there is no known analytic solution to this equation 

except in very simple situations. The Boltzmann 

part, along with the assumptions of the Debye–

Hückel theory, helps us treat the charge density due 

to ions in solution. The result can be written as 

 

∇ ⋅ 𝜀(𝑟)∇𝜑(𝑟) − 𝜅 sinh[𝜑(𝑟)] = −4𝜋𝜌(𝑟).      (4) 

 

This represents the nonlinear Poisson–Boltzmann 

equation, with κ denoting the Debye–Hückel 

parameter. Here, the charge density on the right 

represents the partial charges in the cavity. When 

the ionic strength of the solution or the potential is 

not very high, the equation can be linearized by 

expanding the second term on the left into a Taylor 

series and retaining only the first term to obtain 

 

∇ ⋅ 𝜀(𝑟)∇𝜑(𝑟) − 𝜅𝜑(𝑟) = −4𝜋𝜌(𝑟)        (5) 

 

The PB equation is computationally expensive to 

calculate without approximations [65], [67], [70]. 

 

Another type of solvation model is a probabilistic 

method known as the 3D reference interaction site 

model (3D-RISM) [64], [71]–[77]. This molecular 

theory of solvation simulates the solvent 

distributions rather than the individual solvent 

molecules. However, the solvation structure and the 

associated thermodynamics are obtained from the 

first principles of statistical mechanics. In this 

method, the 3D site density distributions of the 

solvent account for different chemical properties of 

the solvent and solute. These properties include 

hydrogen bonding, hydrophobic forces, and 

solvation thermodynamics, such as the partial 

molar compressibility and volume. The solvation 

free energy is calculated from the RISM equation 

as well as the closure relation [78]–[82]. Several 

additional advances have been made in formulating 

improved versions of the 3D-RISM theory 

including the hypernetted chain (HNC) closure 

approximation [71], [72]. Another derivation came 

from the molecular Ornstein–Zernike integral 

equation [82] for the solute-solvent correlation 

functions [74], [74], [75], [83]. Sometimes the 

calculated solvation free energy for ionic and polar 

macromolecules involves large errors due to the 

loss of long-range asymptotics of the correlation 

functions. Analytical corrections of the electrostatic 

long-range asymptotics for the 3D site direct 

correlation functions as well as the total correlation 

functions have been obtained [76], [77], [83]. Other 

developments include the closure approximation, 

3D-KH closure, for solid-liquid interfaces, as well 

as poly-ionic macromolecules [75], [83]. 3D-RISM 

has been coupled with MD  by making use of a 

multiple time step (MTS) algorithm [84], [85] or by 

the contraction of the solvent degrees of freedom 

and the extrapolation of the solvent-induced forces. 

This resulted in faster calculations, which is useful 

for larger systems [66]. A multi-scale method of 

multiple time steps molecular dynamics (MTS-

MD) is referred to as MTS-MD/OIN/ASFE/3D-

RISM-KH [66] and it converges the 3D-RISM-KH 

equations at large outer time steps. Converging the 

3D-RISM-KH integral was obtained by using 

solvation force-coordinate extrapolation (SFCE) in 

the subspace of previous 3D-RISM-KH solutions 

[86]. Another developed model is the 3D-RISM-

KH-NgB [87]. In this model the non-polar 

component of the hydration free energy obtained 

from 3D-RISM-KH is corrected using a modified 

Ng bridge function [88]. Improved performance of 

3D-RISM calculations was obtained them on 

graphical processing units (GPUs) with a 

modification of the Anderson Method [89] that 

accelerates convergence [90].  
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Explicit solvation is characterized by modeling 

individual water molecules around a solute. There 

are several explicit water models available in the 

Amber, NAMD and Gromacs MD simulation 

packages, including: SPC [91], SPC/E [91], POL3 

[92], TIP3P [93], TIP3P/F [94], TIP4P [93], [95], 

TIP4P/Ew [96] and TIP5P [97]. Examples of 

explicit water models are the simple point charge 

(SPC) model and the extended simple point charge 

(SPC/E) model [91]. In both of these models the 

water molecules are rigid. A derivative of SPC with 

flexible water molecules has been developed [98]. 

Another simple explicit model is the POL3 water 

model, which is a polarizable model [92]. More 

complex explicit water models include the 

transferable intermolecular potential 3 point 

(TIP3P) model, and its 4 and 5 point derivatives 

(TIP4P and TIP5P). The numbers in these models 

represent the number of interaction sites in each 

model, with just the basic oxygen atom and two 

hydrogen atoms modeled in the case of TIP3P [93]. 

A re-parameterized model of TIP3P is the TIP3P-

PME/LRC, also referred to as TIP3P-F [94], which 

calculates electrostatic contributions by particle 

mesh Ewald (PME) summation and includes a 

long-range van der Waals correction (LRC). TIP4P 

[93], [95] introduced a fourth dummy atom bonded 

to the oxygen, improving the electron distribution 

of the water molecule. This model has been re-

parameterized for use with Ewald sums: TIP4P/Ew 

[93], [95]. The five interaction points in the TIP5P 

[97] model include two dummy atoms, which 

further improves the charge distribution around the 

water molecule. 

 

3. Docking Methods 

 

Virtual screening has attracted much attention in 

the pharmaceutical industry [99], [100]. It provides 

a more economical way to screen diverse chemicals 

as drug candidates compared with wet-lab 

approaches. It consists of the creation of a chemical 

library of ligand structures, followed by searching 

for optimal ligand-receptor binding modes through 

docking algorithms, and finally the evaluation of 

binding affinities. There are three criteria that are 

required to successfully identify drug candidates. 

First, the chemical library needs to be large and 

contain diverse chemical structures. Second, 

conformational searching algorithms need to be 

able to search many possible binding modes within 

a reasonable time. Third, an appropriate scoring 

function needs to be utilized to correctly evaluate 

the binding affinity of the ligand-receptor 

interaction so that the ligands can be ranked. In the 

framework of information theory, the first and third 

criteria represent the fundamental information 

required in virtual screening process. The second 

criterion then can be treated as an information 

processing guideline. The efficiency and accuracy 

of this step will depend on the methods of 

information processing. 

 

Genetic algorithms, which borrow from the concept 

of genomic evolution processes to search 

conformations of complex targets and chemical 

structures, are commonly used in docking 

protocols, such as AutoDock [101]. Chang et al. 

have offered a better alternative, MEDock [102]. 

Although MEDock did not completely exploit 

entropic-based inductive inference for searching, it 

does utilize the maximum entropy principle as a 

guideline to make decisions during this process. 

The fundamental question asked in MEDock is 

“What is the probability of finding the deepest 

energy valley in a ligand-target interaction energy 

landscape?”. Maximum entropy provides a 

direction to update the initial guess of binding 

modes (described by an almost uniform 

distribution) to the optimal mode (a localized 

distribution around the global energy minimum). 

 

Other popular docking software packages are listed 

below. 

• DOCK (http://dock.compbio.ucsf.edu/) 

considers the biggest cluster as the active 

one.  

• DockIt 

(www.metaphorics.com/products/dockit.ht

ml) 

• GOLD 

(http://www.ccdc.cam.ac.uk/Solutions/Gol

dSuite/Pages/GOLD.aspx) is a program 

for protein-ligand docking. 

• Haddock 

(http://www.nmr.chem.uu.nl/haddock/)  

• Fred 

(http://www.eyesopen.com/products/appli

cations/fred.html)  

• Flipdock (http://flipdock.scripps.edu/) 

 

Although these algorithms also contain pocket 

searching and pocket-ligand matching algorithms, 

they are not fast enough. The program named 

Pocket can find the pockets and mouths of a protein 

much faster than DOCK. Instead of the probe 

sphere, it describes the pockets and mouths by the 

residues surrounding them. Additional references 

that can assist the reader in studying virtual 

screening processes include [103]–[114]. 

 

4. Drug Design 

Quantitative structure-activity relationships 

(QSAR) represent an attempt to correlate structural 

or property descriptors of compounds with their 

http://dock.compbio.ucsf.edu/
http://www.ccdc.cam.ac.uk/Solutions/GoldSuite/Pages/GOLD.aspx
http://www.ccdc.cam.ac.uk/Solutions/GoldSuite/Pages/GOLD.aspx
http://flipdock.scripps.edu/
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chemical and biological activities. These 

physicochemical descriptors, which include 

parameters to account for hydrophobicity, 

topology, electronic properties, and steric effects, 

are determined empirically or, more recently, by 

computational methods. Activities used in QSAR 

include chemical measurements and biological 

assays. QSAR have been applied in many 

disciplines, with many applications pertaining to 

drug design and environmental risk assessment. 

QSAR dates back to the 19th century when A.F.A. 

Cros observed that toxicity of alcohols to mammals 

increased as the water solubility of the alcohols 

decreased [115]. In the 1890's, H.H. Meyer and C. 

E. Overton independently noticed that the toxicity 

of organic compounds depended on their 

lipophilicity [115], [116] . Later L. Hammett 

correlated electronic properties of organic acids and 

bases with their equilibrium constants and 

reactivity. Hammett observed that adding 

substituents to the aromatic ring of benzoic acid 

had an orderly and quantitative effect on the 

dissociation constant. These relationships are 

termed linear free energy relationships. That is, the 

free energy is proportional to the logarithm of the 

equilibrium constant. Although they can be stated 

in terms of thermodynamic parameters, no 

thermodynamic principle states that the 

relationships should be true. Tables of values for 

numerous substituents have been published [117], 

[118]. A QSAR was developed based on the values 

of the substituents. QSAR based on Hammett's 

relationship utilize electronic properties as the 

descriptors of structures. Difficulties were 

encountered when applying Hammett-type 

relationships to biological systems, indicating that 

other structural descriptors were necessary. 

However, Hansch recognized the importance of the 

lipophilicity, expressed as the octanol-water 

partition coefficient, on biological activity [119]. 

This parameter provides a measure of the 

bioavailability of compounds, which determines, in 

part, the amount of the compound that arrives at the 

target site. Relationships were developed to 

correlate a structural parameter (i.e., lipophilicity) 

with activity, in some cases univariate relationships 

correlating structure and activity were found but in 

other cases parabolic relationships between 

biological response and hydrophobicity could be fit 

by including a (log P)2 term in the QSAR. QSAR 

are now developed using a variety of parameters as 

descriptors of the structural properties of molecules 

including quantum mechanically derived electronic 

parameters. Other descriptors to account for the 

shape, size, lipophilicity, polarizability, and other 

structural properties have also been devised. A 

QSAR database at Pomona College summarizes 

over 6000 datasets of biological and chemical 

QSAR. With the advent of high performance 

computing this field has subsequently evolved into 

what is now termed rational drug design or 

computer-assisted drug design. 

 

Computer-Assisted Design (CADD), also called 

computer-assisted molecular design (CAMD), 

represents sophisticated applications of computers 

as tools in the drug design process. CADD attempts 

to find a ligand that will interact favorably with a 

receptor that represents the target site. Binding of 

ligands to the receptor may include hydrophobic, 

electrostatic, and hydrogen-bonding interactions. In 

addition, solvation energies of the ligand and 

receptor site are important because partial to 

complete desolvation must occur prior to binding. 

This approach to CADD optimizes the fit of a 

ligand in a receptor site. However, optimum fit in a 

target site does not guarantee that the desired 

activity of the drug will be enhanced or that 

undesired side effects will be diminished. 

Moreover, this approach does not consider the 

pharmacokinetic propertiess of the drug. Ideally, 

one would have 3D structural information for the 

receptor and the ligand-receptor complex from X-

ray diffraction or NMR. In the opposite extreme, 

one may have no experimental data to assist in 

building models of the ligand and receptor, in 

which case computational methods must be applied 

without the information that the experimental data 

provide. Based on the information available, one 

can apply either ligand-based or receptor-based 

molecular design methods. The ligand-based 

approach is applicable when the structure of the 

receptor site is unknown, but when a series of 

compounds have been identified that exhibit the 

activity of interest. Ideally, one should have 

structurally similar compounds with high activity, 

with no activity, and with a range of intermediate 

activities. In recognition site mapping, an attempt is 

made to identify a pharmacophore, which is a 

template derived from the structures of these 

compounds. It is represented as a collection of 

functional groups in three-dimensional space that is 

complementary to the geometry of the receptor site. 

In applying this approach, conformational analysis 

is required, the extent of which is dependent on the 

flexibility of the compounds investigated. One 

strategy is to find the lowest energy conformers of 

the most rigid compounds and superimpose them. 

Conformational searching on the more flexible 

compounds is then done while applying distance 

constraints derived from the structures of the more 

rigid compounds. Ultimately, all of the structures 

are superimposed to generate the so-called 

pharmacophore. This template may then be used to 

develop new compounds with functional groups in 

the desired positions. This strategy assumes that the 
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minimum energy conformers bind most favorably 

in the receptor site. In fact, there is no a priori 

reason to exclude higher energy conformers as the 

source of activity. The receptor-based approach to 

CADD applies when a reliable model of the 

receptor site is available, as from X-ray diffraction, 

NMR, or homology modeling. With the availability 

of the receptor site, the problem is to design ligands 

that will interact favorably at the site, which is a 

docking problem. 

 

Receptor-based drug design incorporates a number 

of molecular modeling techniques including 

docking. More recent versions of DOCK allow 

scoring based on force fields, which include both 

van der Waals and electrostatic interactions [120]. 

These results obtained with DOCK illustrate the 

potential for searching objectively for ligands 

complementary to receptor sites. Once potential 

drugs have been identified by the methods 

described above, other molecular modeling 

techniques may then be applied. For example, 

geometry optimization may be used to "relax" the 

structures and to identify low energy orientations of 

drugs in receptor sites. MD may assist in exploring 

the energy landscape, and free energy simulations 

can be used to compute the relative binding free 

energies of a series of putative drugs. 

 

Free-energy perturbation (FEP) is considered the 

most accurate computational method for 

calculating relative solvation and binding free-

energy differences. An important factor limiting the 

use of FEP in pharmaceutical research is its low 

throughput, which is due in part to the dependence 

on accurate molecular mechanics (MM) force field 

parameters for individual drug candidates and the 

long time required to complete the process. A novel 

efficient method that uses quantum mechanics 

(QM) for treating the solute, MM for treating the 

solute surroundings, and the FEP method for 

computing free-energy differences has been 

developed by Reddy et al. [121]. While 

considerably more CPU demanding than 

conventional FEP methods, this method (QM/MM-

based FEP) alleviates the need for development of 

molecule-specific MM force field parameters and 

therefore may lead to future automation of FEP-

based calculations.  

 

5. Pocket prediction algorithms 

 

Numerous software packages and web-sites can be 

found that assist in the process of binding pocket 

identification on a molecular target. A 

comprehensive summary of this effort can be found 

at: 

https://bioinformatictools.wordpress.com/tag/pocke

t-finder/ 

The following is a collection of the most popular 

pocket prediction algorithms that are publicly 

available: 

1.  SURFNET 

(http://www.biochem.ucl.ac.uk/~roman/su

rfnet/surfnet.html) 

2. LIGSITEcsc (http://scoppi.biotec.tu-

dresden.de/pocket/) is a extension of 

LIGSITE, which uses the amino acid 

conservation to predict the location of 

pockets. 

3. Pocket-Finder 

(http://www.bioinformatics.leeds.ac.uk/po

cketfinder) 

4. CASTp (http://sts-

fw.bioengr.uic.edu/castp/) 

5. VOIDOO 

(http://xray.bmc.uu.se/usf/voidoo.html) 

6. PocketPicker (http://gecco.org.chemie.uni-

frankfurt.de/pocketpicker/index.html) 

7. APROPOS [122] 

8. PASS 

(http://www.ccl.net/cca/software/UNIX/pa

ss/overview.shtml) 

Pocket finding methods are also reviewed by Guo 

et al. [119] Pocket-Finder, VOIDOO, CASTp and 

LIGSITEcsc, Pocket-Picker, PASS and SURFNET 

are all based on geometry except Qsite-Finder, 

which ranks the results based on their energy 

values. Huang and Schroeder [120] find that 

different pockets binding the same ligand show 

greater variation in their shapes than can be 

accounted for by the conformational variability of 

the ligand. This suggests that geometrical 

complementarity in general is not sufficient to 

drive molecular recognition. Nevertheless, when 

considering only shape and size, a significant 

proportion of the recognition power of a binding 

pocket for its ligand resides in its shape. Laurie and 

Jackson [121] use a geometry and energy based 

method to predict the location of binding pockets. 

They rank the results not by volumes which most 

of programs use but according to the sum of the 

interaction energy for sites within each cluster. 

LIGSITEcsc's authors use a geometry-based method 

to predict pocket and re-rank the results according 

to a conversion function, and find a better result. 

The idea is to use not only geometry but also 

energy or conserved properties to improve the 

results. In [122] the authors present a binding-sites 

database (SitesBase) which lists known protein-

ligand binding sites. They use a geometry hashing 

method to do an all-against-all structure 

comparison and stored the results in SitesBase.  

It is not easy to determine which residues belong to 

a pocket. Distance criteria provide a simple and 

https://bioinformatictools.wordpress.com/tag/pocket-finder/
https://bioinformatictools.wordpress.com/tag/pocket-finder/
http://www.bioinformatics.leeds.ac.uk/pocketfinder
http://www.bioinformatics.leeds.ac.uk/pocketfinder
http://sts-fw.bioengr.uic.edu/castp/
http://sts-fw.bioengr.uic.edu/castp/
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popular way to define the pocket according to the 

ligand's position. Typically, one defines the atom 

on the pocket if its distance to the ligand is less 

than a certain value (8 Å or 4 Å have been used in 

some papers). 

It is also important to list key properties of binding 

pockets, namely: 

1) Depth, for example the so-called gamma depth 

or the L1-depths are calculated. The gamma-depth 

is an index of an atom that tells us how big a sphere 

can touch this atom from outside of the protein. L1-

depth is a statistical depth function and can 

measure how deep the pocket is located inside a 

protein. 

2) Hydrophobic value. There are many indexes to 

measure hydrophobicity. We choose Meek's values 

to measure it. 

3) H-bond acceptor and donor numbers on the 

pocket’s surface. 

4) Solvent-accessible surface area 

5) Volume 

6) Conservation: In general, the functional sites of 

protein are more conserved. This feature is 

calculated by the conservation database or blastp.  

Essential information regarding protein function is 

generally dependent on the protein’s tertiary 

structure. This includes the enzymatic function of a 

protein, and also the binding of ligands, such as 

small molecule inhibitors [123]. Methods 

developed for predicting an enzymatic function of a 

protein by identifying catalytic residues include: 

finding local characteristics of functional 

residues [124], [125], applying known templates of 

active sites [126], [127] or identifying the surface 

shape of active sites [128]–[132]. 

 

In order to predict ligand binding we first need to 

determine a 3D structure of the protein in question, 

which can be done using several experimental or 

computational methods [133], [134]. Structure-

based pocket prediction employs geometrical 

algorithms or probe mapping/docking 

algorithms [135]. Comparing these two kinds of 

methods, it can be said that the geometrical 

algorithms have low computational costs in 

contrast to the mapping/docking and scoring of 

molecular fragments, but the latter algorithms have 

a greater physical meaning. Geometrical algorithms 

analyze protein surfaces, and once a structure has 

been determined a number of algorithms may be 

used to predict binding pockets on the protein 

surface [120], [121], [136]–[139]. One such 

example, SURFNET [136], fits spheres into the 

spaces between protein atoms and finds gap 

regions. The results obtained this way correspond 

to the cavities and keys of a given protein. An 

algorithm based on geometric hashing called 

VISGRID [140] uses the visibility of constituent 

atoms to identify cavities. “Active site points” are 

identified by PASS [139]. In this method the 

protein surface is coated with a layer of spherical 

probes, then those that clash with the protein or 

which are not sufficiently buried are filtered out. 

The active site points are identified from the final 

probes. Another method is LIGSITE [120], [141], 

which is an improvement of the POCKET 

algorithm [142]. This algorithm puts protein-

occupied space in a grid and identifies clefts by 

scanning areas that are enclosed on both sides by 

the protein’s atoms. An alpha-shape algorithm is 

used by CAST [137] and APROPOS [138]. 

DRUGSITE [135] and POCKET-FINDER [143], 

in addition to the protein’s shape, also consider 

physicochemical properties for identification of 

ligand binding pockets. Further geometrical 

algorithms are TRAVEL DEPTH [144], 

VOIDOO [145], and CAVITY SEARCH [146]. 

QSITEFINDER [121] uses interaction energy 

computation between the protein and a van der 

Waals probe to find favourable binding sites. Some 

methods using mapping/docking and scoring of 

molecular fragment concepts are given by Dennis 

et al. [147], Kortvelyesi et al. [148], Ruppert et 

al. [149], and Verdonk et al. [150]. There are also 

several docking based methods that use ligands to 

probe the proteins for binding sites [151]–[154]. 

 

CADD methodology often applies protein–ligand 

docking methods, most commonly structure-based 

methods. These methods provide support to the 

rational design and optimization of novel drug 

candidates [155]. Many structure-based protein–

ligand docking methods have been reported in the 

literature [156]–[161]. These methods generally 

rely on first identifying a ligand-binding pocket in 

the protein structure. 

 

Pocket-ligand matching methods involve some 

popular algorithms to match the pocket and ligand 

by their complementarity of shape. Two methods 

can be implemented relatively easily: distance 

distribution and spherical harmonic-based.  

         1. Distance distribution: compute the 

distances between all atoms in the pocket or in the 

compound, then compare the probability 

distribution of the distances. If the distribution is 

similar, their shape is similar, too. This measure is 

independent of the translation and rotation shifts. 

So computing this index is easy and fast.  

         2. Spherical harmonics. The theory of 

spherical harmonics says that any spherical 

function can be decomposed as the sum of its 

harmonics. The pockets and the compounds can be 

represented by a series of spherical harmonics. We 

can use the expansion coefficients for spherical 



 
 

Tuszynski et al. 2018. Biomedical Sciences Today 3:e15 

13 

harmonics to represent the shape. They are 

independent of rotation-invariant.  

These two methods mentioned above are both 

global shape matching algorithms.  

 

In view of biomedicine, the effectiveness of a drug 

in treating a disease hinges on the fact that the drug 

compound matches a functional pocket of the 

proteins that cause this disease. There are many 

algorithms for predicting the pockets, and all of 

these algorithms use the simplification that the 

largest pocket is determined as the functional 

pocket of a given protein. Pockets, geometric 

cavities and depressions in protein surfaces and 

structures have been identified as features of many 

functionally important sites on proteins.  Many 

algorithms to find pockets, given a protein 

structure, have been developed.  For simplicity, we 

assume that although each protein may have many 

pockets, one and only one is of functional 

importance. Thus, determining the functional 

pocket from a set of identified pockets is an 

important step. Certainly, the simplification that the 

largest pocket is the functional pocket is popular 

with existing algorithms, and an observed rate of 

correct prediction for this simple rule is 75% 

(LIGSITEcsc), 67% (LIGSITEcs) 65% (LIGSITE), 

54% (PASS), and 42% (SURFNET). These rates 

do not seem too bad; implying that indices of the 

pocket size (volume, surface area, etc.) are 

generally very important.  However, by extending 

the set of traits used the determination accuracy can 

likely be improved. In general, these scores are 

lower than what might be obtained from a smaller, 

less general benchmark set. For example, 

SURFNET scores 83% on its original benchmark 

of 67 proteins. It is clear that these may not be 

representative of proteins in general and that a 

bigger, representative benchmark is needed to 

confidently validate accuracies. Since a shape 

related property, i.e. size, is known to be a factor 

for the match between protein and compound, we 

use a geometrical-based method. After this large 

benchmark set is built, we study the chemical and 

physical properties of each pocket, with the intent 

of finding the most important traits determining the 

functional pocket.  

There are two databases used most frequently in the 

computational drug design and discovery research. 

The Protein Data Bank (PDB) [5] provides 3D 

protein structures for input into the pocket finding 

algorithms. The PDBbind database contains the 

structure of complexes from PDB.  This dataset is 

used to estimate whether the pockets we identify 

are functional pockets, and as a training set to 

improve the prediction. 

PDBbind: To validate the usefulness of the public 

prediction algorithms for functional pockets, a 

common database with a large size is needed. For 

example, the validation of DOCK in [162] was 

based on a set of 114 complexes, while the 

validation of LIGSITEcsc in [120] was based on a 

set of 48 pairs of bound/unbound structures. 

Among existing datasets, the “refined set” of 

PDBbind [163] is a good choice for a benchmark 

dataset due to its large size and its manually 

verification. The PDBbind database may be found 

at: http://www.pdbbind.org. The current version of 

the PDBbind database (version 2007) has 3124 

protein-ligand complexes. 1300 of these have been 

manually selected to form the “refined set”, with 

focus on the quality of structures and binding data. 

Further reduced from this is the “core set” of 70 

triplets (210 complexes) of related proteins. The 

PDBbind-refined and PDBbind-core was used as 

the training sets to select the set of traits of pockets. 

The previously discussed pocket prediction 

algorithms, namely:  SURFNET [136], 

LIGSITEcsc[120], Q-SiteFinder and Pocket-Finder 

[121], CAST [137], VOIDOO [145], PocketPicker 

[113], APROPOS [138], PASS [139] and ProShape 

were divided into two classes: geometry based and 

physico-chemical based methods. The geometry 

based methods can be sub-divided into four types 

of algorithms as follows: 

POCKET, LIGSITE, and LIGSITEcsc. These three 

algorithms scan a grid for protein-solvent and 

surface-solvent features. POCKET employs 3 

directions, LIGSITE and LIGSITEcsc, 7 directions; 

also, POCKET and LIGSITE generate the grid data 

directly from atom coordinates while LIGSITEcsc 

first generates the Connolly surface. SURFNET 

places a sphere, not containing any atoms, between 

two atoms. The spheres with maximal volume 

define the largest pocket. CAST triangulates the 

surface atoms and clusters triangles by merging 

small triangles with neighboring large triangles. 

PASS coats the protein with probe spheres, selects 

probes with many atom contacts, and then repeats 

coating until no new probes are kept. The pockets, 

or active site points, are the probes with large 

number of atom contacts.  “POCKET” (a 

subprogram of ProShape software) may also be 

used to obtain the pockets. It uses an alpha-shape-

based method similar to CAST. Benefits to using 

this method are as follows: 

1. “POCKET” is a very efficient program. It 

is very fast in detecting pockets based on a 

fast alpha shape algorithm. Calculation of 

a PDB entry with 1878 atoms only takes 

0.2 sec.  

2.  “POCKET” offers four outputs: the 

pockets (atoms lining these pocket are 

listed), the mouths (atoms of these mouths 

are listed) and the surface areas (including 

both the total areas of pockets and mouths 

http://www.pdbbind.org/
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and the fractional contribution from each 

atom). 

 

Determination of the functional pocket is 

essentially a classification problem. There are 

many classification algorithms in machine learning, 

such as SVM, etc. A number of methods were 

tested using Weka (Waikato Environment for 

Knowledge Analysis), [164] with the random 

decision forest method identified as the best. 

Classification trees (or decision) trees are widely 

used in classification and prediction.  Moving 

upwards from the trunk of the tree, one encounters 

a series of forks were each branch represents 

particular combinations of features and traits in the 

data.  Ultimately, at the end of each branch is a 

single “leaf” or classification.  The random 

decision forest method grows many classification 

trees each trained using a different random subset 

of the training data.  In use, each tree in the forest 

analyzes an input vector and giving a classification, 

and the tree “votes” for that classification. The 

classification having the most votes (over all the 

trees in the forest) is then chosen. The advantages 

of the random decision forest are: (a) Relatively 

low error (perhaps the lowest of any method), (b) 

No over-fitting 

(c) Elegant handling of missing values, (d) Only 

partially black-box (e.g., results include variable 

importance, outlier detection), (e) Can be used for 

supervised and unsupervised learning problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

This review paper provides introductory 

information regarding the computational tools 

currently used in the drug design and discovery 

process. We have given an overview of molecular 

dynamics methods that are very useful in bio-

molecular target characterization for drug action. 

We have also given practical information regarding 

identification of binding pockets for putative 

inhibitors of proteins and enzymes. Lists of 

databases, websites and publicly available software 

packages used in all stages of computational drug 

design have been presented in this paper to assist in 

practical aspects of research in this area. 
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